
Cheetah Whitepaper
Executive Summary
The Cheetah search engine is the fastest dynamic sorted string search algorithm available. It is protected

by both US Patent 10,262,081 and copyright 2014-2021. The only comparable search engine is the tree

search, which by one estimate, is nearly one percent of the Gross World Product. Cheetah consistently

runs four times faster than Tree. Cheetah search engine does insert, update, delete, select, greater than,

less than, like, and between and the corresponding positional calls. This is all the basic database calls. Each

of the eight calls require only one very simple, straight forward line of code per call. There is one field per

Cheetah class, but multiple classes can easily be used for as many fields and tables as you need. Duplicates

are handled internally. Cheetah can be very easily added as a third engine option in any existing database

by a database company or can very easily be used outside of a database as a standalone search algorithm.

Search Algorithm

Background

Any computer science school teaches dozens of search algorithms but almost all of them have major

drawbacks. Very few are excellent at large records for large number of records. There are three main

search algorithms used, Tree, Hash, and Binary. Binary is not dynamic and cannot do insert, update, or

delete. The entire array has to be completely resorted if any of the data changes. Therefore, it is never

used in Databases but is sometimes used in standalone situations outside of a database when one knows

in advance exactly what the data is and it never changes. Hash is a very seldom used alternate search

engine in any database, but it is not sorted and therefore cannot do greater than, less than, like or

between.

Tree is used in most searches in the world. Both Tree and Cheetah are complete solutions having insert,

update, delete, select, greater than, less than, like, and between.

Function

Cheetah search engine looks at the individual letters in a string, but only looks at the minimum number

of letters to make it unique. It does this is such a way as to easily handle when the beginning letters are

all the same or similar. Even when only the very last letters of very large records are different, it only looks

at enough letters to give each unique string its own slot, thus using very few letters even when the

beginning letters are the same.

Cheetah dynamically loads groups of branches as needed so that the memory requirement is very close

to the size and number of records and grows only as needed. Old slots are reused when records are

deleted so that memory does not grow with a dynamic database. This is all done, with linked lists.

When a record is inserted, it looks to see if it is a duplicate string and if so, adds itself to this linked list of

identical strings, or otherwise adds itself to the branches. As each record is inserted, it firsts looks at the

first character to see which branch is associated with this letter. It then looks at the second letter to

determine which branch belongs to the second letter, linked to the first letter. It continues this process

until it finds no next branch. It then compares itself to this last find to determine whether to go before or

after it. It adds itself to the sorted linked list at this position.

When the groups of branches are filled up, a new group of branches is added to memory. The number of

branches in a group can be modified to suit. Each branch allows for characters between character 32 and

character 127, or 96 characters. This range can be changed to suit. The size of the range affects the

memory used. All memory tests were done with a 96-character range.

Insert

The eight standard database calls are incorporated into the Cheetah class. ‘Insert’ accepts a string and

places the string into the class. It first does a ‘Find’ to find the first position that it is found. If it already

exists, it adds it to the duplicate linked list for this string. If it is not found, it adds the string to the Cheetah

branches. A ‘Load’ command is also available which allows an array of strings to be passed in then calls

‘Insert’ for each string.

Update

The ‘update’ call first does a ‘find’ on the string, then a ‘delete’ on this string, then an ‘insert’ of the new

string. It changes the duplicates as well. The sample database program provided shows how to handle

complex database calls for ‘update’ and other calls using the Cheetah class.

Delete

The ‘delete’ call removes the record from the branches, removes it from the sorted linked list, then

removes the duplicates from the duplicate linked list. The previous and next record in the sorted linked

list are then deleted and reinserted to clean up the branches to make them as if the original string had

never been entered.

Select

The ‘select’ call does a ‘find’ to determine the first match. If no match is found, an empty array of integers

is returned. If ‘find’ determines that there is at least one match. Then the duplicate linked list is converted

into an array of integers to return a list of integers to correspond to the positions of the found strings.

Greater

The ‘greater’ call is for greater than. It does a ‘between’ call with the upper limit the highest possible

string. All duplicates are added for each string found.

Less

The ‘less’ call is for less than. It does a ‘between’ call with the lower limit the lowest possible string, a

blank string. All duplicates are added for each string found.

Like

The ‘like’ call does a basic string% which does a ‘find’ on the string then follows the sorted linked list

upward until the highest string with the same beginning is found. More complicated likes can be done

with external software but are not included in the class.

Between

The ‘between’ call is used in ‘greater’ and ‘less’ and is almost always what is actually required in a call. It

does a ‘find’ on the lower string then marches up the sorted linked list until it reaches the higher string,

including all duplicates. All ‘between’, ‘greater’, and ‘less’ calls always include the both end strings

accordingly. They can be easily removed with external software from the returned lists. This allows

greater, greater than or equal, less, less than or equal to be a handled with only one call.

Tests
All tests were run on a standard off the shelf laptop. It should be pointed out that the timings do vary

because of standard background jobs on an off the shelf laptop, but the averages are consistent. Input

files were generated with two parameters, the number of words and the number of rows. Each word is

zero to seven characters between ‘a’ and ‘z’ with spaces in between. cheetah was tested with a character

range of 96. This range is programable. Words per record is typically between 10 and 100. Up to a million

words per record has been tested with similar results.

Intense 24/7 speed and functionality tests have been run on the Cheetah class and database class for

years with no errors or warnings. The ‘insert’ is self-correcting but it has never had to correct itself in all

of testing. The tables below show speed and memory tests. The test machine had thirty-two gigabyte of

memory.

Table 1 shows the percent of time that Cheetah takes compared to tree, which is the only other complete

search algorithm. Notice that the percent is almost always around 20 to 25 percent. That means that

Cheetah is running four times faster, on average, than tree for all of these words and rows.

Table 2 shows the approximate maximum number of records for each type for the number of words.

Cheetah does allow a fewer number of records than the others for small record sizes, but medium and

large record sizes have no difference In memory requirements. This difference is partially due to number

of groups of branches that are added at a time which is programable. A small memory footprint of one

gigabyte was chosen for this test but should be consistent with larger memory footprints.

Table 3 compares Cheetah to all four search algorithms, even though binary and hash are not complete

algorithms and are seldom used. The entry is the number of nanoseconds per record to do the search for

a record on average for the run. Words between 10 and 100 by 10s are matched with rows at multiples

of 100 from 10 to 10,000,000. ‘Type’, ‘words’, and ‘rows’ are self-explanatory. ‘Load’ is the number of

nanoseconds to initially load the strings. Note that load time for Cheetah can be minimized for small

number of records by changing the load branches size, but it is about the same per record as tree for a

large number or records. ‘Same’ is matching each row with an exact match one at a time. ‘Find’ is used in

Cheetah to make it apples to apples with the other search algorithms. The only difference between ‘find’

and ‘select’ is that select gets all the duplicates. The percentages between the two are always within a

couple of percent. ‘More’ adds a letter ‘a’ to each string so that it is not found. ‘Less’ takes off the last

character so that it is not found. The summary of table 3 is found in table 4. The only drawback of Cheetah

is that load always takes longer than the other search algorithms, but load is only done once and ‘find’ or

‘select’ and the other calls are done thousands of times. Table 4 shows that ‘same’ is always faster for

Cheetah compared to tree but slower than binary or hash. When the string is not found in ‘more’ or ‘less’,

Cheetah is almost always faster than tree and comparable to binary and hash. Cheetah does its best with

large records (words) and large number of records (rows).

Table 1 (percent speed between Tree and Cheetah)

 words

rows 10 20 30 40 50 60 70 80 90 100

200000 37 28 26 24 27 31 32 29 32 28

400000 26 24 24 21 24 27 26 24 26 25

600000 26 27 23 22 24 25 24 27 24 22

800000 25 22 21 22 23 22 23 23 23 23

1000000 24 21 25 21 24 24 22 22 24 22

1200000 23 26 21 21 23 22 22 22 22 21

1400000 23 21 21 23 24 22 22 22 24 22

1600000 22 21 21 29 24 23 22 22 22 23

1800000 23 24 24 21 29 24 24 23 21 20

2000000 19 22 21 21 21 21 21 21 20 24

2200000 25 21 21 21 21 23 22 23 21 20

2400000 31 25 30 24 21 24 23 23 24 21

2600000 22 21 24 21 21 23 24 23 23 23

2800000 22 21 24 21 23 20 24 23 22 22

3000000 22 21 21 21 23 24 23 20 23 20

3200000 24 21 21 23 23 23 20 23 20

3400000 21 21 23 23 23 20 23 22 20

3600000 22 20 23 23 23 20 22 23

3800000 29 22 21 23 20 22 23 20

4000000 25 21 23 23 21 21 22

4200000 25 24 23 22 20 22 21

4400000 25 25 23 23 21 23 22

4600000 24 24 24 23 23 22

4800000 24 20 24 25 23 23

5000000 26 24 24 22 23 23

5200000 24 24 24 21 22

5400000 24 23 24 21 23

5600000 25 22 31 23 21

5800000 24 23 23 23 21

6000000 25 25 24 21 22

6200000 23 23 24 21 24

6400000 24 23 31 23

6600000 24 23 22 23

6800000 35 24 22 24

7000000 24 25 21 24

7200000 24 25 21 22

7400000 27 24 23 23

7600000 24 24 23 23

7800000 25 22 23

8000000 25 24 23

8200000 25 24 23

8400000 25 24 23

8600000 37 24 23

8800000 24 32 23

9000000 24 31 23

9200000 25 24 23

9400000 24 22 23

9600000 24 22 23

9800000 24 23 23

10000000 24 23 23

Table 2 (records)

thousands of records at one gigabyte memory

words 10 20 30 40 50 60 70 80 90 100

memory

file 4330 1800 970 900 800 700 600 500 400 300

type

1 cheetah 1200 1100 930 870 800 700 600 500 400 300

2 tree 3290 1800 970 900 800 700 600 500 400 300

3 binary 4160 1800 970 900 800 700 600 500 400 300

4 hash 3980 1800 970 900 800 700 600 500 400 300

Table 3 (nanoseconds)

type words rows load same more less

Cheetah: 10 10 702406 976 1645 1233

Tree: 10 10 58705 1439 1799 2210

Binary: 10 10 24880 719 3238 668

Hash: 10 10 3290 359 925 925

type

Cheetah: 10 1000 13471 225 759 636

Tree: 10 1000 721 957 1288 1015

Binary: 10 1000 1238 460 667 454

Hash: 10 1000 819 199 551 199

type

Cheetah: 10 100000 2531 263 425 302

Tree: 10 100000 478 478 792 651

Binary: 10 100000 715 225 427 280

Hash: 10 100000 274 74 348 204

type

Cheetah: 10 10000000 3534 666 851 725

Tree: 10 10000000 2599 2648 3035 2981

Binary: 10 10000000 761 216 341 287

Hash: 10 10000000 353 78 296 245

type

Cheetah: 40 10 108928 257 462 257

Tree: 40 10 1439 308 514 308

Binary: 40 10 1387 51 308 51

Hash: 40 10 976 0 308 205

type

Cheetah: 40 1000 1676 61 181 86

Tree: 40 1000 209 145 388 215

Binary: 40 1000 270 69 203 93

Hash: 40 1000 251 6 245 153

type

Cheetah: 40 100000 1450 191 337 229

Tree: 40 100000 626 508 800 686

Binary: 40 100000 382 239 377 272

Hash: 40 100000 341 23 415 317

type

Cheetah: 40 10000000 10052 924 1878 748

Tree: 40 10000000 2877 2932 10471 2245

Binary: 40 10000000 900 286 394 296

Hash: 40 10000000 532 93 757 334

type

Cheetah: 70 10 185265 102 565 154

Tree: 70 10 616 205 411 154

Binary: 70 10 2210 102 462 205

Hash: 70 10 2107 51 514 308

type

Cheetah: 70 1000 1700 68 285 110

Tree: 70 1000 131 113 399 192

Binary: 70 1000 202 66 305 119

Hash: 70 1000 346 10 431 271

type

Cheetah: 70 100000 1459 211 415 252

Tree: 70 100000 515 554 989 752

Binary: 70 100000 375 229 443 301

Hash: 70 100000 419 28 565 409

type

Cheetah: 100 10 108568 51 411 51

Tree: 100 10 102 1696 462 154

Binary: 100 10 308 0 411 102

Hash: 100 10 462 0 616 411

type

Cheetah: 100 1000 1751 78 469 139

Tree: 100 1000 180 111 486 205

Binary: 100 1000 176 77 343 126

Hash: 100 1000 423 8 725 385

type

Cheetah: 100 100000 1586 243 515 280

Tree: 100 100000 559 559 1061 831

Binary: 100 100000 409 231 530 338

Hash: 100 100000 509 27 725 532

type

Table 4 (percent)

%compared to cheetah

type same more less

tree 100 92 92

binary 28 50 50

hash 0 50 57

